Cold Work Tool Steel — AISI O1

AISI O1 general purpose oil-hardening tool steel is a versatile manganese-chromium-tungsten steel suitable for a wide variety of cold-work applications.

1. Main characteristics:

Good machinability

Good dimensional stability in hardening

A good combination of high surface hardness and toughness after hardening and tempering.

These characteristics combine to give a steel suitable for the manufacture of tooling with good

tool-life and production economy.

2. AISI O1 can be supplied in various finishes including hot-rolled, pre-machined, fine-machined and precision ground. It is also available in the form of hollow bar.

Typical	С	Mn	Cr W				
Analysis %	0.95	1.1	0.6 0.6				
Standard							
Specification	AISI O1, WNr. 1.2510						
Delivery							
Condition	Soft anne	ealed approx.	190 HB				

3. Heat treatment:

Soft annealing: Protect the steel and heat through to 1435 F (780 C). Then cool in the furnace at 27 F (15 C) per hour to 1200 F (650 C), then freely in air.

Stress – Relieving: After rough machining the tool should be heated through to 1200 F (650 C), holding time 2 hours. Cool slowly to 930 F (500 C) then freely in air.

Hardening: Preheating temperature: 1110–1290 F (600–700 C)

Austenitizing temperature: 1450–1560 F (790–850 C)

Protect the part against decarburization and oxi- dation during hardening.

Quenching Media:

(1). Oil

(2). Martempering bath. Temperature 360–435 F (180–225 C), then cooling in air.

Note: Temper the tool as soon as its temperature reaches 120–160 F (50–70 C).

Tempering:

Choose the tempering temperature according to the hardness required by reference to the tempering graph. Temper twice with intermediate cooling to room temperature. Lowest tempering temperature 360 F (180 C). Holding time at temperature minimum 2 hours.

Tempering Diagram

Martempering:

Tools at austenitizing temperature are immersed in the martempering bath for the time indicated,

then cooled in air to not lower than 210 F (100 C). Temper immediately as with oil-quenching.

لي لم		ب ب		√ Holdina time	Surface hardness prio
Auster tempe	nitizing rature↔	Temp martem	p. of p. bath	in martemp. bath, minutese	to tempering (obtained by
1 520+	825+	435+	225+ ^j	max. 5	64 2 HRC+
1520+ 1520+	825+ 825+ 850-1	390+ 355+ 435+1	200₽ 180₽ 2254	max. 10 max. 20 max 10@	63 2 HRC+ 62 2 HRC+ 62 2 HRC+

4. Applications:

(1). Cutting: Blanking, punching, piercing, cropping, shearing, trimming, clipping

(2). Short cold shears, Clipping and trimming tools for forgings

(3). Forming: Bending, raising, drawing, rim rolling, spinning and flow forming, Small coining dies, Gauges, measuring tools, Turning centres, Guide bushes, ejector pins, high duty, small / medium drills and taps, Small gear wheels, pistons, nozzles, cams

